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Abstract—The combination of LLM agents with external tools
enables models to solve complex tasks beyond their knowledge
base. Human-designed tools are inflexible and restricted to
solutions within the scope of pre-existing tools created by
experts. To address this problem, we propose ATLASS, an
advanced tool learning and selection system designed as a
closed-loop framework. ATLASS facilitates the expansion of
the LLM’s capabilities by enabling it to generate tools on
demand by incorporating external sources. In this framework,
agents play a crucial role in orchestrating tool selection,
execution, and refinement, ensuring adaptive problem-solving
capabilities. The operation of ATLASS follows three phases:
The first phase, Understanding Tool Requirements, involves the
Agents determining whether tools are required and specifying
their functionality; the second phase, Tool Retrieval/Generation,
involves the Agents retrieving or generating tools based on
their availability; and the third phase, Task Solving, involves
combining all the component tools necessary to complete the
initial task. The Tool Dataset stores the generated tools, ensuring
reusability and minimizing inference cost. Current LLM-based
tool generation systems have difficulty creating complex tools
that need APIs or external packages. In ATLASS, we solve
the problem by automatically setting up the environment,
fetching relevant API documentation online, and using a Python
interpreter to create a reliable, versatile tool that works in
a wider range of situations. OpenAI GPT-4.0 is used as the
underlying language model, with safety and ethical concerns
addressed through human feedback prior to the execution
of generated code. By overcoming the limitations of fixed
toolsets and improving adaptability, ATLASS offers a practical
solution that enables users to generate tools dynamically for
complex problem-solving. The system demonstrates competitive
performance when evaluated against baseline models and public
datasets.

Index Terms—LLM Agents, Automatic Tool Generation,
API-Based Tools, Large Language Models

I. INTRODUCTION

Large Language Models (LLMs) have capabilities in a wide
range of tasks, from natural language processing to content
generation and problem solving [18], [30], including support
for user input from all domains and multimodal ability [35].
These attributes enable user demands to be met in different
applications, including chat systems, intelligent virtual agents,
automated content generation, and code synthesis [2], [37].

Although LLMs have achieved remarkable performance
broadly, they still have inherent limitations, such as out-of-date
information [5] and suffer from performance degradation
[1]. Addressing these problems requires overcoming the
limitations of predefined pipelines, which have restricted
flexibility to calibrate incorrect actions. Additionally, it is
challenging to adapt a general LLM-based agent to handle
a wide range of specialized tasks. [26]. LLM agents are
autonomous systems that combine reasoning, perception, and
action to perform tasks. They bridge general-purpose LLMs
and domain-specific needs by structuring complex problems
into step-by-step reasoning. Researchers have introduced
collaborative environments where multiple intelligent agent
components, each with distinctive attributes and roles, work
together to handle complex tasks more efficiently and
effectively [28].

LLM agents often struggle with complex tasks that require
external knowledge, computations, or real-world interactions
beyond their pretrained capabilities. Tool learning, the ability
of LLM agents to use external resources, is used to help
LLM agents with various auxiliary resources, like search
engines [19], [23] or calculators [8], [24] which empower
them as tool-user agents and improve their ability to tackle
complex tasks. Tool-based agents generally work by breaking
down a task and planning a sequence of tools to complete
it step by step. For each step, the agent executes the tools
by passing arguments and continuously incorporating useful
intermediates into the next action prediction. However, this
approach has difficulty in adapting a single LLM-based agent
to learn multiple specialized actions in solving a task. This
limitation reflects a broader challenge: smaller models struggle
with complex tasks, while specialized agents better handle tool
selection and execution. To mitigate this problem, ConAgents
coordinates three specialized agents for tool selection, tool
execution, and action calibration separately [26].

In this work, we present the ATLASS framework to
automate tool selection, generation, and execution. The
framework uses the generated tools for a single inference and
stores them in the tools database for further use. There are
three key aspects to this contribution:
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• Understanding Tool Requirements: Analyzing user
prompts, defining subtasks, defining the need for tools,
and identifying the appropriate tools from the toolset.

• Tool Retrieval or Generation: Retrieving and registering
tools from the toolset or generating tools and registering
them with the agent.

• Task Solving: Solving user tasks by using tools.
This approach requires detailed task analysis, tool

requirement understanding, and the integration of a
comprehensive tool generation module. Simpler approaches,
like the one used by Large Language Models as Tool Makers
(LATM) [4], result in basic, task-specific tools that overlook
the reuse of similar task requirements. These approaches also
do not create generalized tools that permit this reusability.
ATLASS addresses this limitation by analyzing user queries,
breaking down the tasks, understanding tool requirements,
and identifying that a single tool can efficiently handle similar
queries. This approach creates reusable tools that may be
applied to future tasks to reduce redundancy.

II. LITERATURE REVIEW

Recent advances in large language models (LLMs) have
sparked growing interest in their ability to not only reason over
language but also interact with external tools to solve complex
tasks. Beyond traditional improvements in pre-training,
fine-tuning, and evaluation, a significant body of research
has emerged around enabling LLMs to generate, select,
and use tools effectively. This includes work on program
synthesis, API calling, code generation, and agent-based tool
orchestration. As researchers continue to explore ways to
enhance model performance, increasing attention is being
placed on how LLMs can dynamically acquire capabilities,
either by retrieving existing tools or constructing new ones, to
extend their utility beyond static knowledge boundaries.

At the foundation of this evolution, Zhao et al. [38] provide
a comprehensive review of LLM advancements, covering
pre-training, tuning, and evaluation. Their work emphasizes
key datasets such as Common Crawl, C4, and Wikipedia, and
highlights tuning techniques like FLAN and RLHF. Notably,
they demonstrate that instruction tuning significantly enhances
the performance of LLaMA models, while Chinchilla scaling
strategies improve parameter-to-data efficiency. Building on
this, Marvin et al. [16] examine prompt engineering, another
critical factor influencing LLM effectiveness. They explore
few-shot learning, chain-of-thought prompting, and automatic
instruction generation, ultimately showing that automated
prompts outperform human-designed ones in 19 of 24
NLP tasks. These studies collectively highlight the synergy
between scaling, tuning, and prompt design in driving LLM
performance while also pointing out enduring challenges like
hallucination, scalability, and bias.

Moving from foundational capabilities to alignment and
customization, Wang et al. [30] propose the self-instruct
framework based on GPT-3, demonstrating its superiority
over publicly trained models and comparable performance
to InstructGPT-001. In parallel, Liu et al. [13] investigate

fine-tuning methods that allow for domain-specific adaptation,
significantly boosting performance in specialized contexts.
Addressing the efficiency of these methods, Hu et al. [11]
introduce LoRA, a parameter-efficient approach that
reduces the resource demands of model customization, thus
democratizing access to LLMs. Expanding the conversation,
Minaee et al. [18] explore LLM adaptability, showcasing
their potential for real-world application across diverse
industries. Together, these works emphasize the transition
from general-purpose models to accessible, task-specific
agents.

As LLM capabilities scale, research interest shifts
toward models acting autonomously or in coordination.
Duetting et al. [7] explore this space through the lens
of combinatorial contract theory in multi-agent settings,
presenting approximation algorithms for optimizing
submodular rewards. Building on the concept of agent-based
interaction, Guo et al. [9] survey LLM-based multi-agent
systems, focusing on key aspects such as environment
interaction, communication, and skill development. These
works provide a theoretical and applied basis for understanding
how LLMs can cooperate and specialize in increasingly
complex systems.

At the reasoning level, Xu et al. [33] introduce LE-MCTS,
which improves reasoning by optimizing process pathsyielding
notable gains in mathematical problem-solving accuracy.
Complementing this, Wu et al. [32] propose the AvaTaR
framework to optimize agent tool use, achieving significant
improvements on benchmarks like STARK and HotpotQA.
These developments represent key milestones in enhancing the
reasoning and decision-making capacities of LLM agents.

Further refining tool-use strategies, Shi et al. [27] propose
a collaborative agent framework that relies on grounding,
execution, and review agents communicating through adaptive
protocols. Their SPAN technique distills action strategies
from models like GPT-4 to open-source counterparts,
boosting success rates on ToolBench and RestBench datasets.
Similarly, Chen et al. [6] present AutoAgents, a system that
creates task-specific agents through self- and collaborative
refinement. By adding observers that track task execution,
the framework achieves superior performance in open-ended
question answering and writing tasks, outperforming even
GPT-4.

Cai et al. [4] focus on tool creation through the
LATM framework, which leverages LLMs to generate
task-specific Python functions validated against user-defined
datasets. While effective in structured scenarios, LATM lacks
real-time external retrieval capabilities, a gap we aim to
address in this work. By integrating SerpAPI [25], our
system enhances adaptability through dynamic, web-based
information extraction.

In the broader ecosystem of LLM orchestration, the
MASS framework [39] enhances multi-agent collaboration
through optimized prompts, communication protocols, and
system instructions. Themis [12] aligns LLM outputs with
human judgment via context-aware evaluations, while agentic
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reasoning frameworks [31] integrate tools like web search
and knowledge graphs to improve scientific reasoning.
These frameworks underscore the growing sophistication and
scalability of LLM-driven systems.

Despite this progress, challenges persist in real-world
integration. Ni et al. [20] highlight issues like inconsistent
API documentation and access control, proposing APILlama
and a validation pipeline to streamline scientific tool
generation. Similarly, Zhang et al. [36] present Auto-CoT,
which automates chain-of-thought prompting using a
clustering-based method. This reduces manual effort while
achieving competitive results in symbolic and commonsense
reasoning tasks, although reliability and computational
overhead remain concerns.

Building upon these insights, our work introduces ATLASS,
a framework designed to overcome the limitations LLM agents
face when creating tools for complex tasks. ATLASS analyzes
tasks, retrieves relevant tools, and dynamically constructs
new ones when necessary. By incorporating real-time web
search capabilities, the system adapts to evolving contexts,
effectively bridging gaps in static toolchains. With robust
task decomposition and adaptive tool generation, ATLASS
advances the autonomy and domain generality of LLM-based
agents.

III. ATLASS

ATLASS has a closed-loop architecture with multiple LLM
agents, a multi-agent LLM, and a tool database. It can analyze
user queries, break them down into subtasks, understand
tool requirements, find existing tools and/or generate required
tools, and solve user tasks using the generated or retrieved
tools. Three key processes divide the ATLASS framework,
each focusing on a distinct aspect of the overall workflow.
Figure 1 shows the proposed ATLASS framework.

A. Tool Requirement Analysis

This stage of the framework processes the user’s initial
query and determines whether an external tool is necessary
to complete the task. It includes agents that rely only on the
LLM’s internal knowledge base to generate an appropriate
response, without utilizing any external tools.

Let the user query be denoted as q, and the encoded
representation of the query using the LLM’s internal encoder
be q⃗ = Enc(q), where q⃗ ∈ Rd.

Example

User Query: Retrieve a list of the top 100 scientific books
and organize them in ascending order.

1) Task Analyzer: The Task Analyzer function A
decomposes the query q into a set of subtasks S =
{s1, s2, . . . , sk}, where each si represents a smaller part of
the task required to accomplish the overall task.

S = A(q)

Since the system follows a sequential agentic workflow,
the output of each agent directly impacts the performance of
downstream agents. Accurate decomposition of the users task
into smaller subtasks is therefore critical. We define a subtask
as the smallest unit of work that can be resolved through a
single function call or atomic tool invocation. This coarseness
promotes modularity, improves interpretability, and facilitates
error isolation and recovery across the agent pipeline.

This strategy enables the subsequent agents to solve the
problem step-by-step. The set S helps the Tool Master
recognize which of the subtasks may require an external tool.
Figure 2 demonstrates how the Task Analyzer works.

Example

Task Analyzer:
1. A web crawler to fetch book data from a website.
2. Present the search result in ascending order.

2) Tool Master: An agent takes the breakdown of the
sub-tasks from the Task Analyzer and determines whether
external tools are required to solve the task or not. If
external tools are required, this agent provides the ’name’ and
’description’ of all the required tools in a JSON format. If no
tool is required, this agent simply responds appropriately.

The Tool Master agent T takes the subtasks S and decides
whether any subtask si ∈ S requires an external tool.
Formally, for each subtask si, a binary indicator function f(si)
is defined:

f(si) =

{
1 if an external tool is required for si
0 otherwise

The set of tools required is:

Trequired = {ti | f(si) = 1, ti = Name + Description(si)}

If Trequired = ∅, the framework proceeds directly to the
solution generation using the LLM alone. Otherwise, the
required tools are sent to the Tool Retrieval stage. Figure 3
shows the pipeline for the Tool Master agent.

Example

The response of Tool Master Agent

[
{
"name": "Web_Scraper",
"description": "A tool to extract
specific information from web pages
by crawling and parsing their content."

}
]

B. Tool Retrieval/Generation

After understanding the tool requirements, the system
determines whether a tool needs to be generated from scratch
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Fig. 1: Overview of ATLASS workflow, with Tool Requirements Analysis, Tool Retrieval/Generation, and Task Execution.

Fig. 2: Task Analyzer Pipeline

using the Tool Generator G or retrieved from the Tool Dataset
D. This stage utilizes a multi-agent setup along with the
dataset D to execute the appropriate course of action.

Let T = {t1, t2, . . . , tn} be the set of required tools
extracted by the Tool Master. For each tool ti ∈ T , we define:

ti = {namei, desci, is availablei}

If is availablei = True, then ti is retrieved from D;
otherwise, it is generated via G. The Tool Generator G is

Fig. 3: Tool Master Pipeline

composed of several specialized agents:
• Code Writer W: Generates executable Python code.
• Code Executor E : Executes and verifies code

generated by W .
• Web Crawler S: Retrieves current API documentation

if needed.
These agents (code writer, code executor, and web crawler)

ensure the following:
• The tool is generated only when no similar tool is

available in the dataset, and
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• Ensure that the generated tool is functioning correctly.
1) Tool Database: ATLASS maintains a tool database D,

which is a JSON-based repository containing metadata of each
tool in the format

ti = {namei, desci, func namei}

The actual implementations are stored in corresponding
Python scripts and func namei are used as a lookup key.

2) Tool Selector: This agent ascertains which necessary
tools are already present in the system and which ones require
creation using the Tool Dataset and Required Tools to tell us
which tools need to be retrieved and which tools need to be
generated. Given the required tools T and the dataset D, the
Tool Selector ST performs the following classification:

∀ti ∈ T , is availablei =

{
True, if ti ∈ D
False, otherwise

Figure 4 shows how the Tool Selector process works.

Fig. 4: Tool Selector Pipeline

Example

The response of Tool Selector

[
{
"name": "web_scraper_tools",
"description": "A tool to extract
information from web pages.",
"is_available": false

}
]

3) Tool Generator: Non-API-Based: For the tools that are
not available in the system and don’t require any kind of API,
we use the Tool Generator agent to generate Python code
for those tools. The Tool Generator consists of two agents:
a code writer and a code executor 5. For any tool ti such that
is availablei = False and ti does not require external APIs,
the Tool Generator GnonAPI proceeds as follows:

1) Pass {namei, desci} to W to generate:

cinstall
i (dependency installation code)

2) Execute cinstall
i via E and return result ri.

3) On success, generate function code cfunc
i with

annotations.
4) Execute cfunc

i via E .
5) If errors occur, send them back to W; repeat until a

working version is found.
6) Once functional, add ti and cfunc

i to D.

The process operates in a loop, continuously executing until
it locates a workable code base. Once it finds a working code
base, it adds its information and the tool’s information back
to the Tool Dataset.

4) Tool Generator : API-Based: For the tools that do
require APIs, we at first pass the tool’s information to the
code writer. When the code writer receives an API-based tool,
it simply outputs ”API KEY REQUIRED: Name of the API”.
The reason we don’t try to generate API-based tools directly
is: 1. An API key is required to run any API-based tool, which
the agent currently doesn’t have, and 2. API parameters change
over time, and it is not necessary that the model knowledge
base has the most current information. For these reasons, we
use a web crawler agent, which uses a web searching tool
(Serp API [25]) to get the current documentation’s information
on the API usages. The system also asks the user to provide
the API key if required. The initial tool information (name
and description), the latest documentation content from the
internet, and the user-provided API key are combined to create
a new prompt, which is then passed to the code generator to
generate the tool.

Figure 5 shows how the Tool Generator generates the tool.
Once the required tools are generated or retrieved, the system
combines them and passes them to the final stage of the
framework.

Fig. 5: Tool Generator Pipeline
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Example

The response of Tool Generator Agent

def web_search_tool(query, api_key):
result = GoogleSearch("q": query,
"api_key": api_key).get_dict()

return "query": query, "results":
["title": r["title"], "link":
r["link"], "snippet": r["snippet"]
for r in result.get("organic_results",
[])]

C. Task Solving

This final stage of the framework focuses on resolving the
user’s initial query q. The output from the Tool Master agent
TM includes both the structured representation S and the tool
requirements Trequired.

Case 1: No Tools Required. If Trequired = ∅, the system
bypasses the Tool Retrieval/Generation module, and the task
is solved using the internal capabilities of the Task Solver
agent R. In this case, the final response a is computed as:

a = R(q,S), where Trequired = ∅

Case 2: Tools Required. If Trequired ̸= ∅, the Task Solver
receives the set of tools, including:

Tactive = Tretrieve ∪ Tgenerate

and uses them in conjunction with the structured information
S to generate the final response:

a = R(q,S, Tactive), where Trequired ̸= ∅

Thus, the Task Solver R dynamically determines whether
to depend solely on its internal knowledge base or to invoke
external tools to generate a response.

1) Task Solver: The Task Solver agent R is responsible
for producing the final answer a to the user’s query q,
either autonomously or by orchestrating tool usage. The agent
employs a reasoning mechanism to:

• Use internal knowledge when Trequired = ∅.
• Invoke external tools in Tactive as needed when Trequired ̸=

∅.
Figure 6 shows the workflow of the Task Solver agent during

the problem-solving process.

IV. DATASET CREATION AND COLLECTION

While ATLASS functions without requiring specific datasets
for task execution, we conducted evaluations using two distinct
datasets containing 954 question-answer pairs. These datasets
served as benchmarks for assessing system performance.

ATLASS Dataset: This is a newly created evaluation
dataset curated and annotated by our research team. It
comprises 492 question-answer pairs across diverse domains,
including mathematical reasoning, data analysis, analytical
thinking, problem-solving, information extraction, and data
visualization. Each entry was manually constructed and

Fig. 6: Task Solver Pipeline

validated by human experts to ensure quality, diversity, and
domain coverage.

For each data point, we include the question, the
reference answer, the tool name, a high-level tool description,
and its corresponding function implementation. Tools are
designed to be domain-agnostic and composable, favoring
reusable functionality (e.g., plotting, filtering, summarization,
or arithmetic operations) rather than task-specific heuristics.
To ensure generalizability, tool definitions are reviewed
across multiple examples and benchmarked for cross-task
applicability.

The dataset is also designed to support longitudinal
evaluation: tools undergo periodic refactoring and curation
to eliminate redundancy, enhance abstraction, and maintain
relevance with evolving task distributions. During evaluation,
only the question is presented to the model, and the generated
output is compared to the reference answer. This setup allows
rigorous assessment of dynamic tool generation and selection
capabilities, benchmarking ATLASS and baseline models in
realistic agentic decision-making scenarios.

Example

Example of ATLASS data

[
{
"question": "Find the Roman numeral
for 1987",
"answer": "MCMLXXXVII"

},
{
"question": "Find the quarter of
2023-09-18",
"answer": "3"

},
......

]

CRAFT (Math + Table): This dataset contains
462 question-answer pairs sourced from the CRAFT
repository [34], covering two specific domains: mathematics
and tabular data reasoning. The mathematics subset, derived
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from the algebra portion of the MATH dataset [10], features
challenging, competition-level algebra problems along with
their solutions. The tabular subset is based on the TabMWP
dataset [15], which includes natural language questions paired
with tables. This subset is designed to assess the ability of
language models to interpret and reason over structured data.

To demonstrate the ability to generate API-based tools, we
have created a collection of 10 questions that require extensive
API calls, such as SERP_API, OpenWeatherMap_API,
AlphaVantage_API, Tavily_AI_API, News_API,
YFinance_API, and CoinGecko_API to get the required
data to answer user queries. Also, some of them require a
personalized API key to access the data.

V. RESULT ANALYSIS

The performance of the ATLASS framework is influenced
by the efficiency of multiple interconnected modules,
including the Task Analyzer, Tool Master, Tool Selector,
and Tool Generator. As a sequential conversational system,
the output of each module directly impacts the subsequent
modules, creating a flow throughout the system. We
assess multiple criteria to evaluate the overall system
performance, taking into account the individual contributions
and interdependencies of each module. We evaluate our
approach on different domains, including mathematical
operations, data analysis, data visualization, forecasting, NLP
tasks, and API-based information retrieval.

A. Tool Selection Performance

Given a user prompt, after task and tool requirement
analysis, the Tool Selector module determines whether the
necessary tool exists in the current tool database. For example,
consider the user prompt: Generate a bar chart with the last
five days stock price of Apple Inc. The Tool Selector identifies
that this task requires two distinct tools: Stock Price Checker
and Data Visualizer. If the database includes a tool named Bar
Chart Generator, the Tool Selector demonstrates the ability to
map Data Visualizer to this functionally equivalent tool. This
mapping ability enhances tool reusability and generalization
while minimizing redundant tool generation.

To evaluate this mechanism, we conducted a comprehensive
analysis over the entire dataset of 954 question-answer
pairs. This full-scale evaluation provides stronger empirical
grounding for assessing the accuracy and generalizability
of the tool selection process. Table I presents a detailed
breakdown of Tool Selector performance across all examples,
measuring exact match accuracy, semantic equivalence, and
failure cases.

This illustrates that ATLASSs Tool Selector generalizes well
across semantically similar prompts, reducing redundancy and
improving reusability.

B. Tool Creation Performance Analysis

1) Performance of Non-API-Based Tool Generation: We
focus on two crucial criteria to assess the effectiveness
of various tool generation pipelines: Correctness and

Tools Name: Word Frequency Counter

Description:

A tool that can split a sentence into individual
words count the frequency of each word, sort
them according to their frequency, and select
the most common words.

Origin Prompt: Find 10 most common words in the sentence.

Alternative Prompts:

1. Rank the following keywords in order of
relevance in this document.
2. Can you find the unique words in this
sentence and tell me how rare they are?
3. Find out how similar these two texts are
based on their most commonly used words.

TABLE I: The tool Word Frequency Counter generated by
the prompt ”Find 10 most common words in the sentence.” is
reusable by the list of Alternative Prompts

Executability. These evaluate the semantic correctness and
the practical usability of the tools generated. Our comparison
is based on three baseline tool generation models: CRAFT
[34], CREATOR [22], and LATM [3].

a) Correctness (G-Eval): Correctness is evaluated using
the G-Eval [14] metric, which employs an LLM-as-a-judge
approach, enhanced by Chain-of-Thought (CoT) prompting.
G-Eval constructs evaluation prompts based on predefined
criteria and test case parameters (LLMTestCase as mentioned
in the DeepEval evaluation framework). The LLM then assigns
a score between 1 and 5, reflecting the alignment of the
tool output with the expected result. These individual scores
are aggregated and normalized using a weighted summation
of output token probabilities to ensure consistent evaluation
across different tool generations. We consider a tool output
to be correct if its normalized correctness probability score
exceeds a threshold of 0.5.

b) Executability: In addition to correctness checking, we
verify the executability of the generated tools. Executability is
defined as the percentage of tools that run without errors and
produce correct outputs. Formally, let T be the total number
of generated tools, and let Texec denote the number of tools
that execute successfully and produce correct outputs. Then,
the executability score E is given by:

E =
Texec

T
× 100%

A high executability score (E ≈ 100%) indicates that the
tool generation process is stable and viable, whereas lower
scores (E ≪ 100%) suggest challenges in ensuring stable
functionality.

Table II encapsulates non-API-based tool generation
correctness and executability scores. As shown, ATLASS
scores the highest on the Correctness metric with a strong
score of 83.87%. In terms of executability, ATLASS nearly
matches the top score with 99.56%. CREATOR, on the other
hand, achieves the highest executability score of 99.78%.
This indicates that ATLASS consistently generates accurate
and operational tools. CREATOR also demonstrates solid
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performance, with a relatively high executability score of
97.85%, but it falls behind ATLASS in terms of correctness
(61.07%). By contrast, ATLASS excels across both metrics,
demonstrating impressive correctness and executability scores
of 83.87% and 99.56%, respectively. These results highlight
ATLASSs ability to consistently generate both accurate and
highly functional tools, showcasing the strength and reliability
of its generation pipeline.

Metric Dataset ATLASS CRAFT CREATOR LATM

Correctness ATLASS dataset 83.87% 80.43% 61.07% 52.04%
CRAFT (Math + Table) 89.5% 89.2% 47.5% 66.7%

Executability ATLASS dataset 99.78% 83.44% 97.85% 71.40%
CRAFT (Math + Table) 99.56% 89.85% 99.78% 83.89%

TABLE II: Evaluation of Correctness and Executability across
Tool Generation Models

These results affirm that ATLASS achieves a balanced
and superior performance in terms of both correctness and
executability compared to baseline models.

2) Performance of API-Based Tool Generation: Most of
the existing pipelines, including CRAFT, CREATOR, and
LATM, fall short in generating API-based tools, which is a
significant limitation, given that the majority of real-world
LLM tools are external API-based. The primary challenges are
the need for secure API key access and the constantly evolving
nature of API implementations. These pipelines either ignore
these challenges altogether or generate nonfunctional, legacy
code. ATLASS overcomes these limitations through two key
innovations:

• Human-in-the-Loop for API Key Access: ATLASS
is built on the LangGraph and leverages its built-in
human-in-the-loop. Whenever an API key is necessary,
the execution will be paused and the user will be
prompted for secure key input. The generated tools can
then run correctly without having the sensitive credentials
hardcoded.

• Web Retrieval for Up-to-Date Implementations:
ATLASS integrates a web retrieval system (SerpAPI)
to query Internet sources regarding the current Python
versions of requested APIs. Samples retrieved are made
available as background to the code generation framework
so that the system can create tools reflecting the latest
usage and syntax of modern APIs.

To evaluate this capability, we tested ATLASS using
10 queries involving various free APIs. In the initial
experiments, ATLASS successfully generated functional tools
for APIs such as SERP_API, OpenWeatherMap_API,
AlphaVantage_API, Tavily_AI_API, News_API,
YFinance_API, and CoinGecko_API. These results
show promising potential, though further research is
needed to handle more complex or less-documented APIs.
Nevertheless, ATLASS demonstrates a marked advancement
in API-based tool generation over prior methods.

3) Feature-based Comparison: Table III provides a
high-level comparison of functional features supported by the

evaluated tool generation pipelines. Among them, ATLASS
demonstrates the most comprehensive feature set, supporting
advanced capabilities such as package installation, API-based
tool creation, web data retrieval, and interactive user-driven
tool generation. These features collectively distinguish
ATLASS in terms of flexibility, automation depth, and
practical usability.

In contrast, other pipelines like CRAFT, CREATOR,
and LATM offer partial support across various dimensions.
While all pipelines can handle code debugging and task
breakdown, only ATLASS supports all advanced features, such
as generating multiple tools concurrently, retrieving/storing
tools, and integrating external APIs or online content. This
broader functionality positions ATLASS as a more versatile
and production-ready pipeline.

Features ATLASS CRAFT CREATOR LATM
Install Packages ✓ ✗ ✗ ✗

Code Debugging ✓ ✓ ✓ ✓

API based Tools ✓ ✗ ✓ ✗

Web Retrieval ✓ ✗ ✗ ✗

Generation from Query ✓ ✗ ✓ ✗

Task Breakdown ✓ ✓ ✓ ✓

Multiple Tools at once ✓ ✓ ✓ ✗

Tool Retrieval ✓ ✓ ✗ ✓

Tool Storage ✓ ✓ ✗ ✓

TABLE III: Evaluation of Features across Tool Generation
Model

C. Efficiency of Inference

Because LLM-based agents have a high inference cost,
we look into how efficiently ATLASS can solve tasks by
generating required tools. At the time of the experiment, we
had used the ”gpt-4-0613” model for all the tasks. On average,
we have consumed 2895 tokens at an average cost of 0.1008
USD per prompt when the tool is not available; on the other
hand, the consumed tokens are 1920, and the cost is 0.0624
USD per prompt when the tool is available. Table IV shows
the token consumption and cost for each prompt. The cost
calculation is based on the OpenAI pricing page [21].

Task With no tools in DB With tools in DB
Token Cost (USD) Token Cost (USD)

Sorting 3161 0.1127 2337 0.0781
Reversing 3195 0.1078 1678 0.0536
Cleaning 2627 0.0918 1901 0.0620
Extraction 2620 0.0891 1930 0.0617
Graph Generation 3881 0.1363 2118 0.0703
Stock Exchange 2495 0.0875 1740 0.0558
Sentiment 2588 0.0909 1822 0.0586
SerpAPI 2596 0.0909 1838 0.0591

TABLE IV: Cost Analysis for end-to-end framework

As an end-to-end framework, every query undergoes task
analysis, retrieval or generation, and task execution, ensuring
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the system can handle any given task. The overall cost can
be minimized by utilizing smaller model variations, such as
GPT-3.5.

VI. CONCLUSION

The experimental evaluations validate the effectiveness
and robustness of the ATLASS framework across key
dimensions of automated tool generation and selection.
ATLASS consistently outperforms strong baselines such
as CRAFT, CREATOR, and LATM, particularly in terms
of correctness, executability, and adaptability in both
non-API and API-based tool settings. Notably, ATLASS
fills a critical gap in prior work by enabling secure,
real-time generation of API-integrated toolsan essential
capability for dynamic, real-world applications that has
been largely underexplored in previous systems. Beyond
accuracy, ATLASS incorporates a rich set of features
designed for practical deployment, including dynamic package
installation, web data retrieval, multi-tool chaining, and
human-in-the-loop API access. These capabilities collectively
position ATLASS as a production-ready framework, capable of
scaling across diverse domains and evolving task distributions.
Overall, ATLASS represents a significant step toward the
development of autonomous, trustworthy, and extensible
agentic systems for tool generation. Future research will focus
on enhancing its cross-model generalizability, minimizing
human intervention through risk-aware automation, and
strengthening interoperability across heterogeneous LLM
environments.

VII. LIMITATIONS AND FUTURE WORK

While ATLASS demonstrates superior tool-generation
capabilities compared to previous works, certain limitations
remain. The current implementation relies on a single language
model (OpenAI GPT-4.0) for all agentic tasks, which may
restrict the systems generalizability and robustness across
different deployment environments. Moreover, challenges
persist in reliably generating highly abstract, API-integrated,
or multi-step tools, which can affect the applicability of
ATLASS in more complex domains.

We recognize that transitioning ATLASS to support other
LLMs (e.g., ChatGPT-3.5 or open-source models like Mistral
or LLaMA) introduces a number of non-trivial challenges.
These include: (i) variation in tool generation accuracy due to
differences in instruction-following behavior, (ii) inconsistent
handling of structured tool specifications or API schemas,
and (iii) interoperability issues arising from discrepancies in
tool-calling formats and execution contexts. Addressing these
will require the design of abstraction layers or adapter modules
that enable consistent tool invocation across heterogeneous
models.

To address these limitations and guide future improvements,
we propose the following directions for research:

• Enhance the Tool Generators capacity to handle more
complex, multi-step, and API-based tools.

• Strengthen framework security by addressing risks
associated with tool execution, including secure
management of user-provided API keys.

• Conduct a comprehensive, quantitative evaluation of
ATLASSs tool generation and selection performance
compared to other agentic tool-use pipelines.

• Extend ATLASS to support multiple LLMs, including
ChatGPT-3.5 and open-source alternatives, by
modularizing components such as Task Analyzer
and Tool Selector. Evaluate the trade-offs in accuracy,
reasoning capability, and tool interoperability.

VIII. SAFETY AND ETHICS

Automating tool generation introduces important safety,
ethical, and security considerations, including the risk of
executing harmful code and the exposure of sensitive API
credentials. To mitigate these risks, the current implementation
incorporates the following safeguards:

1) Human Feedback Generated code may pose
security threats if executed without inspection [29].
Therefore, the framework enforces a human-in-the-loop
mechanism, requiring human verification before any
generated Python code is executed. This allows users
to assess intent, detect malicious logic, and ensure safe
behavior.
However, we acknowledge that this approach, while
effective for safety, may not scale efficiently in
high-volume or real-time environments. To address
this, future iterations of the framework will incorporate
risk-aware automation strategies. These include
automated static code analysis, execution sandboxing,
and trust scoring of code segments, enabling selective
human intervention only when risk thresholds are
exceeded.

2) Security of API Keys API keys represent a critical
security vulnerability when passed directly to language
models [17]. In our current design, API keys are never
exposed to the model directly. Instead, we use regular
expressions to dynamically insert the keys into execution
contexts after code generation, keeping them outside the
model’s prompt space.
To further improve this, future versions will adopt secret
management best practices (e.g., environment-based
vault injection) and integrate policy-based access control
mechanisms to restrict tool-level access.
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