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Abstract

Generative AI (GEN AI) models have revolutionized di-
verse application domains but present substantial challenges
due to reliability concerns, including hallucinations, semantic
drift, and inherent biases. These models typically operate as
black-boxes, complicating transparent and objective evalua-
tion. Current evaluation methods primarily depend on subjec-
tive human assessment, limiting scalability, transparency, and
effectiveness. This research proposes a systematic methodol-
ogy using deterministic and Large Language Model (LLM)-
generated Knowledge Graphs (KGs) to continuously monitor
and evaluate GEN AI reliability. We construct two parallel
KGs: (i) a deterministic KG built using explicit rule-based
methods, predefined ontologies, domain-specific dictionar-
ies, and structured entity-relation extraction rules, and (ii) an
LLM-generated KG dynamically derived from real-time tex-
tual data streams such as live news articles. Utilizing real-
time news streams ensures authenticity, mitigates biases from
repetitive training, and prevents adaptive LLMs from by-
passing predefined benchmarks through feedback memoriza-
tion. To quantify structural deviations and semantic discrep-
ancies, we employ several established KG metrics, includ-
ing Instantiated Class Ratio (ICR), Instantiated Property Ra-
tio (IPR), and Class Instantiation (CI). These metrics system-
atically evaluate critical structural properties, including class
and property instantiation ratios, class depth and complexity,
and inheritance patterns. An automated real-time monitoring
framework continuously computes deviations between deter-
ministic and LLM-generated KGs. By establishing dynamic
anomaly thresholds based on historical structural metric dis-
tributions, our method proactively identifies and flags signif-
icant deviations, thus promptly detecting semantic anomalies
or hallucinations. This structured, metric-driven comparison
between deterministic and dynamically generated KGs deliv-
ers a robust and scalable evaluation framework. A demo web-
site is currently live at ( anonymous ).

Motivation
Large Language Models (LLMs) have driven a major shift in
evaluation methods, moving from task-specific benchmarks
toward capability-based evaluation, emphasizing skills such
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as knowledge, reasoning, instruction-following, multimodal
understanding, and safety (Cao et al. 2025). Current tech-
niques typically rely on fixed datasets and automated evalua-
tion frameworks, including the ”LLM-as-a-judge” approach,
which leverages other models for scoring (Cao et al. 2025).
Despite their efficiency, these evaluation methods exhibit
notable limitations: they are static and do not dynamically
adapt to models’ continually expanding capabilities, leading
to significant evaluation generalization issues. Moreover, the
static datasets are vulnerable to ”data contamination,” where
the evaluation samples may inadvertently become part of the
model’s training corpus, thus overstating performance (Cao
et al. 2025).

We identify critical issues inherent in these evaluation ap-
proaches: they are not continuous, failing to evolve along-
side rapidly improving models, and they lack feedback
mechanisms that would enable adaptive learning from eval-
uation results (Cao et al. 2025). Furthermore, these bench-
marks often fail to capture the real-world settings in which
LLMs are deployed—contexts that involve multi-turn inter-
actions, tool use, open-ended objectives, and dynamic envi-
ronments. As models increasingly serve as agents in com-
plex workflows, static evaluations fall short in assessing
emergent behaviors, self-correction abilities, or long-term
coherence. There is a growing need for evaluation protocols
that are not only comprehensive and resilient to contami-
nation, but also interactive, context-aware, and temporally
adaptive. Such evaluation systems must reflect the evolving
landscape of LLM capabilities, supporting both compara-
tive benchmarking and longitudinal assessment of learning
agents.

To address these challenges, we propose a framework that
monitors LLMs in real time (assuming LLMs provided by
AI companies from their server are continuous self-updates
via feedback learning). Our key contributions are:

• We introduce a continuous, KG-based evaluation
paradigm that contrasts a deterministic, rule-built KG
with an LLM-generated KG from live news streams
(such as BBC, Reuters, assuming these news are not
AI generated and target LLM models are not yet
trained/learned on these news yet) to monitor GEN-AI
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reliability.
• We provide a transparent deterministic baseline KG

pipeline (ontology design, dictionary/pattern NER, rule-
driven triple extraction) as an explainable reference.

• We formalize schema-aware structural metrics—ICR,
IPR, and depth-weighted CI—to quantify completeness,
expressivity, and ontological balance.

• We define a source- and schema-grounded Hallucina-
tion Score using entity tracing, rule conformance, and
SPARQL validation to reduce subjective judging.

• We develop an automated drift/anomaly detector with a
weighted anomaly score and dynamic thresholds (αt =
µ+ λσ) for proactive alerts.

• We present a three-phase methodology unifying real-
time KG construction, structural evaluation vs. baseline,
and continuous monitoring.

• We report an empirical comparison of nine LLMs across
three timestamps against GT KG statistics, highlighting
model-specific and temporal behaviors.

• We release a prototype demo (hosted at anonymous)
showcasing the end-to-end monitoring pipeline.

The remainder of this paper is organized as follows.
Related works surveys prior efforts on LLM monitor-
ing, KG-grounded evaluation, and hallucination mitiga-
tion. Our Solution introduces the comparative, KG-based
evaluation premise and high-level architecture, with Fig-
ures 1 and 2 summarizing the pipeline. Methodology for-
malizes the three-phase procedure—real-time KG construc-
tion, structural evaluation against a deterministic baseline
via ICR/IPR/CI and a hallucination score, and continuous
anomaly detection with dynamic thresholds. Result Analy-
sis reports a multi-model, multi-timestamp study that sur-
faces stability and drift patterns. Threats to Validity dis-
cusses baseline fallibility, metric limitations, streaming bi-
ases, and motivates our anomaly-first stance. Benefits and
Use Cases outlines practitioner scenarios—from personal
model tracking to enterprise procurement and SLA monitor-
ing—and Conclusion summarizes contributions and future
directions.

Related Works
Large-scale generative AI models (gen-AI) have rapidly
transformed numerous applications but exhibit significant
reliability challenges, including inconsistent results, hallu-
cinations, and inherent biases. These issues underscore the
need for continuous monitoring and rigorous evaluation to
ensure robustness, reliability, and trustworthiness(OpenAI
2023; LangChain 2023). The evaluation of GEN-AI mod-
els is complicated due to the absence of ground truth data
and inherent randomness in their output. Extensive data, sig-
nificant computing resources, and considerable human feed-
back are necessary for training, raising scalability and bias
concerns. Moreover, gen-AI models typically function as
black-box systems, complicating analysis and understand-
ing of their decision-making processes. Current evaluation
methods heavily rely on subjective human metrics, limiting
transparency and scalability. Addressing these complexities

requires a principled approach to continuous monitoring and
evaluation to detect undesirable behaviors and ensure relia-
bility, robustness, and fairness (AI 2023; Helicone 2023).

Key strategies for continuous monitoring include detailed
logging and tracing of model inputs and outputs, auto-
mated quality evaluation methods, and human-in-the-loop
feedback integration. Real-time anomaly detection promptly
alerts teams to irregularities, and systematic bias and fair-
ness audits ensure equitable behavior across diverse de-
mographics. Effective monitoring involves tracking critical
metrics such as performance (latency, throughput), cost ef-
ficiency (resource utilization, API token consumption), ac-
curacy and quality (hallucination rates, task success rates),
safety and compliance (toxicity rates, PII leaks), bias and
fairness, and user satisfaction metrics (ratings, engagement)
(Biases 2023; ML 2023). Selecting appropriate tools is es-
sential for successful monitoring and evaluation. Prominent
platforms include LLM observability tools like LangSmith,
Arize AI, and Phoenix; traditional Application Performance
Monitoring (APM) systems such as Prometheus and Open-
Telemetry; experiment tracking platforms like Weights &
Biases and Comet; and custom solutions such as Helicone
and Langfuse. Integrating monitoring into CI/CD pipelines
enhances reliability through pre-deployment evaluations, ca-
nary releases, A/B testing, real-time feedback loops, and
monitoring as code (MLflow 2023). OpenAI’s ChatGPT
uses continuous user feedback for iterative enhancements,
while GitHub Copilot tracks user productivity metrics. Tools
like Arize AI’s Phoenix diagnose and resolve hallucination
issues in practical deployments.

Recent advancements have explored knowledge-graph
(KG) and structured representations to improve hallucina-
tion evaluation and mitigation. The GraphEval framework
leverages KGs to detect hallucinated triples in LLM re-
sponses via explicit triple-level checks, and employs natu-
ral language inference models to both identify and correct
hallucinations(Sansford et al. 2024). MultiHal introduces a
multilingual, multihop KG-grounded benchmark for halluci-
nation evaluation. By mining and validating KG paths across
languages, it enhances factual grounding beyond English-
centric datasets(Lavrinovics et al. 2025). Guan et al. pro-
posed Knowledge Graph-based Retrofitting (KGR), which
refines LLM-generated responses by traversing the KG to
autonomously validate and retrofit factual statements, re-
ducing hallucination in complex reasoning tasks(Guan et al.
2023).

From a broader perspective, surveys highlight the util-
ity of KG augmentation and retrieval-augmented generation
(RAG) techniques for fact-aware generation and hallucina-
tion reduction—metrics like Hits@k, MRR, and exact match
have been used to quantify improvements(Agrawal et al.
2024). Notably, KGLens provides an efficient KG-guided
probing system that generates fact-checking and QA ques-
tions via Thompson sampling; this framework proficiently
uncovers factual blind spots in LLMs(Zheng et al. 2024).
Beyond KG-based solutions, methods like Self-Alignment
encourage LLMs to self-evaluate and fine-tune based on
internal consistency, enhancing factuality under unsuper-
vised conditions(Zhang et al. 2024), while **semantic en-
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tropy** approaches quantify hallucination risk by measur-
ing response variability across multiple outputs(Farquhar
et al. 2024).

These structured, KG-informed, and self-reflective tech-
niques represent advancing frontiers in evaluating LLM ro-
bustness and factual integrity.

Our Solution
Comparing Knowledge Graphs (KGs) generated through de-
terministic rule-based methods against those generated by
Large Language Models (LLMs) provides a systematic way
to evaluate trustworthiness and robustness. By examining
structural differences and key attributes between these KGs,
one can identify areas where LLMs deviate from predefined
rules, highlighting potential reliability issues.

Deterministic KG are generated using fixed Named En-
tity Recognition (NER) rules, predefined dictionaries, and
relationship schemas. These serve as a baseline or pseudo-
ground-truth, assuming accurate rule-based entity identifi-
cation and relation extraction. Regular updates incorporate
new entities and domain-specific dictionaries, maintaining
accuracy and completeness. In contrast, LLM-generated KG
are dynamically constructed by parsing textual data, such as
news articles, leveraging the model’s implicit understand-
ing and contextual awareness rather than fixed dictionar-
ies or rules. Evaluating these two types of graphs involves
checking structural integrity by comparing nodes (entities)
and edges (relations). Discrepancies, such as missing nodes
or incorrect edges, indicate inaccuracies or hallucinations in
the LLM-generated graph.

Entity and relation accuracy are verified against determin-
istic NER rules. If entities or relations identified by the LLM
contradict established rules, this signals potential errors or
hallucinations. For instance, if the deterministic KG cor-
rectly categorizes an unknown entity as a noun but the LLM
misclassifies or incorrectly associates it, this clearly demon-
strates an error. Both deterministic and LLM-generated KG
undergo continuous real-time updates based on new data,
such as news articles. Analyzing structural differences over
time provides a time-series perspective on the stability of the
graphs. Variations in structural consistency between deter-
ministic and LLM-generated KGs signal anomalies or fluc-
tuations in the robustness of the model.

Completeness, consistency, and accuracy are essential at-
tributes evaluated during this process. Completeness as-
sesses whether all entities and relations are accurately iden-
tified. Consistency examines if the LLM-generated graph
consistently aligns with deterministic rules. Accuracy eval-
uates whether the relationships generated by the LLM cor-
rectly reflect those defined in the deterministic KG. Hallu-
cination detection involves identifying direct discrepancies,
particularly where the LLM-generated KG introduces enti-
ties or relations not present or incorrectly established com-
pared to the deterministic KG. For example, if the deter-
ministic KG identifies ”Gliese 581g” solely as a noun en-
tity without predefined relationships, but the LLM-generated
KG erroneously creates a relation such as (Gliese 581g, con-
tains, water), it clearly signifies a hallucination. Robustness
is evaluated by observing the frequency and magnitude of

structural deviations and inaccuracies over time. Stability
scores derived from these differences quantify the robust-
ness of the LLM-generated KG.

Trustworthiness is assessed based on the frequency and
severity of deviations from the deterministic KG. Lower de-
viation frequency and magnitude suggest higher trustworthi-
ness. Continuous monitoring allows for the establishment of
benchmarks for trustworthiness and early detection of any
degradation over time. In summary, this comparative ap-
proach between deterministic and LLM-generated KGs sys-
tematically highlights structural differences and rule viola-
tions, effectively evaluating the robustness and trustworthi-
ness of LLM-generated knowledge structures and detecting
model-induced hallucinations.

Methodology
In addressing the significant challenge of monitoring and
evaluating Large-scale GEN AIs (Gen-AI), we propose an
innovative approach leveraging real-time Knowledge Graph
(KG) generation via Large Language Models (LLMs) and
structural metric comparisons against a non-LLM baseline
KG. We proposed a three-phase methodology that intro-
duces a rigorous and systematic approach for evaluating and
monitoring large-scale generative AI through the lens of
knowledge graph structures. Phase I involves constructing
KGs from real-time textual(daily recent news articles) out-
puts via LLMs. Phase II systematically evaluates the struc-
tural integrity of these KGs using defined metrics and com-
pares them to baseline graphs constructed via deterministic
methods. Phase III implements an adaptive, continuous eval-
uation framework utilizing anomaly detection mechanisms
to proactively manage generative model reliability.

Step I: Real-Time Knowledge Graph Construction:
In the first step, we have to develop two KGs, one from
the LLM target and another using deterministic methods. In
the deterministic approach, we construct a baseline knowl-
edge graph (KG) for the documents that will be coming in
real time using transparent, rule-based extraction methods
inspired by established projects such as YAGO and DBpe-
dia. These systems generate structured semantic data from
unstructured or semi-structured sources by relying on pre-
defined ontologies, lexical resources, and hand-crafted map-
ping rules. Similarly, our method begins with the definition
of a domain-specific ontology specifying valid classes (C),
properties (P), and relationships Rbase ⊆ C × P × C.

We employ dictionary-based named entity recognition
(NER) and pattern-driven extraction rules to convert rele-
vant text segments from news articles into RDF triples of
the form (subject, predicate, object). These triples are aggre-
gated into a deterministic KG where entities form nodes and
predicates form edges. While less flexible than LLM-based
methods, this approach guarantees consistency, explainabil-
ity, and serves as a reliable structural baseline for evaluat-
ing the evolving outputs of GEN AIs. For the KG of target
LLM, we will use the API to collect the latest news source.
Real-time batches of news articles are provided as input to
LLMs. Formally, define a batch as B = {a1, a2, . . . , an},
where each ai denotes a news article. For each article ai,
the LLM generates structured RDF triples T = {(s, p, o) |
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Figure 1: Overview of the LLM Evaluation Technique with KG

s ∈ S, p ∈ P, o ∈ O}, with S , P , and O representing the
sets of subjects, predicates, and objects, respectively. Using
these triples, we construct a Knowledge Graph GLLM(V,E),
where vertices V = S ∪ O represent entities, and edges
E = {(s, o, p) | (s, p, o) ∈ T} represent semantic relation-
ships. A deterministic approach to constructing a Knowl-
edge Graph (KG) from news articles will involve explicit,
repeatable rule-based methods without probabilistic or ma-
chine learning components. The process includes ontology
definition, pattern-based extraction, entity recognition, triple
extraction, and graph construction. Explicitly define an on-
tology O = (C,P,R) with classes C, properties P , and
permissible relations R ⊆ C × P ×C. Create deterministic
extraction rules ri : (pattern) → (s, p, o), where s, o ∈ C
and p ∈ P . Entity recognition deterministically matches en-
tities using predefined dictionaries. Structured triples T =
{(s, p, o)} are extracted and aggregated into a Knowledge
Graph G = (V,E), where V = {s, o | (s, p, o) ∈ T} and
E = {(s, o, p) | (s, p, o) ∈ T}. This method ensures trans-
parency, consistency, and repeatability.

Step II: Evaluation and baseline comparison of struc-
tural metrics: To evaluate the structural fidelity of Knowl-
edge Graphs (KGs) generated by Large Language Models
(LLMs), we employ a targeted suite of structural metrics
designed to capture the completeness, expressiveness, and
ontological coherence of the graph. We are considering the
robustness and hallucination scores for baseline comparison.
Also, latency was being overlooked for the comparison.

Robustness Score: Specifically, we focus on three core
metrics—Instantiated Class Ratio (ICR), Instantiated Prop-
erty Ratio (IPR), and Class Instantiation (CI)—which col-
lectively provide a high-level yet granular view of how well
the LLM-generated KG aligns with principled schema con-
struction.

Metric Definition

ICR |Cinst.|
|Ctotal|

IPR |Pinst.|
|Ptotal|

CI
∑nc

i=1
ir(ci)
2d(ci)

, ir(ci) =
|ci|

|instances|

Table 1: Summary of Structural Metrics

Instantiated Class Ratio (ICR) quantifies the proportion
of classes that are actually used to instantiate entities in the
KG. A high ICR indicates that most classes defined in the
ontology are actively used, suggesting a well-grounded and
utilized schema, whereas a low ICR reveals underutilization
or class redundancy.

Instantiated Property Ratio (IPR) measures the propor-
tion of properties that have been instantiated in triples, rela-
tive to the total number of properties defined in the schema.
This reflects the expressivity of the KG and its ability to
model rich attribute relationships. A low IPR may indicate
an overly sparse graph or failure of the generation process to
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populate relevant predicate structures.
Class Instantiation (CI) captures not only whether

classes are instantiated, but also how instantiation is dis-
tributed across the class hierarchy. It applies a depth-aware
weighting to each subclass’s instantiation ratio, thereby pe-
nalizing shallow or overly deep class structures that do not
contribute meaningfully to instance diversity. This metric
is especially useful for detecting ontological imbalance and
promoting semantically rich class usage.

By systematically tracking ICR, IPR, and CI, we ensure
that the LLM-generated knowledge graph not only covers
the intended classes and properties but also maintains a bal-
anced structure across the ontology. For example, a low ICR
might reveal that many classes defined in the schema are
never instantiated, indicating limited conceptual diversity,
while a low IPR could highlight missing or underused re-
lationships between entities. CI further adds depth by ex-
posing whether entities are clustered in only a few classes or
spread meaningfully across the hierarchy. When these met-
rics are compared to a deterministic baseline, sudden drops
or unusual patterns immediately signal potential issues. Us-
ing these metrics helps us catch issues early, whether it’s
small inconsistencies like underused classes or bigger prob-
lems such as missing relationships or hallucinated facts. This
makes our evaluation process practical and reliable for real-
world applications.

Hallucination Score: To assess semantic fidelity and
prevent factual inaccuracies in LLM-generated Knowledge
Graphs, we introduce a Hallucination Score grounded in
entity-level consistency, ontology conformance, and extrac-
tion traceability. Our methodology begins by validating
Named Entity Recognition (NER) outputs across multiple
stages: (1) tagging consistency, (2) rule conformance, and
(3) entity resolution. We ensure that extracted entities align
with expected patterns using a combination of predefined ex-
traction rules and regular expressions, and are semantically
mapped to ontology-aligned KG classes (e.g., PERSON →
foaf:Person). To verify structural grounding, we apply
SPARQL queries that enumerate all instantiated entity types
and their properties:

SELECT ?entity ?type WHERE
{ ?entity rdf:type ?type.
FILTER(?type IN (ex:Person,
ex:Organization, ex:Location)) }

We then cross-check the expected number and type of enti-
ties against those extracted by the LLM. Any spurious entity
that is neither present in the input source nor mapped to the
KG schema is counted as a hallucinated instance. The Hal-
lucination Score is computed as:

Hallucination Score =
|Ehallucinated|

|Etotal|

where |Ehallucinated| denotes the number of entities that failed
validation (e.g., do not appear in input, are semantically in-
coherent, or violate schema alignment), and |Etotal| is the
total number of extracted entities. A lower score indicates
higher semantic accuracy and structural grounding. This
metric is particularly useful in tracking model behavior over

time, identifying model drift, and validating factual align-
ment in deployment settings.

For evaluation, these structural metrics are computed for
both the LLM-generated KG (GLLM) and a handcrafted or
deterministic baseline KG (Gbase). We quantify the abso-
lute metric differences as ∆M = |M(GLLM) −M(Gbase)|,
where M denotes one of the three metrics above. This allows
us to measure how closely the generative model replicates
domain-grounded structural patterns. Since Gbase reflects a
curated, domain-aligned gold standard, large deviations in
structural scores can reveal issues such as class imbalance,
semantic drift, or schema misuse in the generated output.

By grounding model evaluation in formal graph-theoretic
abstractions, this method supports systematic, interpretable,
and scalable assessment of LLM-generated knowledge
structures. It also establishes a foundation for continuous
tracking of quality and robustness in evolving generative
pipelines.

Step III: Continuous Monitoring and Evaluation
Framework Development: The third phase involves de-
veloping an automated real-time evaluation and monitoring
framework. Define an anomaly score A(Gt) at timestamp
t as A(Gt) =

∑
M∈M wM · |M(GLLM,t) − M(Gbase)|,

where M represents the set of structural metrics and wM

are metric-specific significance weights. A knowledge graph
is flagged as anomalous if A(Gt) > αt, triggering real-
time alerts. The anomaly detection threshold αt is dynam-
ically updated as αt = µA(t) + λσA(t), where µA(t) and
σA(t) denote the historical mean and standard deviation of
anomaly scores, and λ adjusts detection sensitivity. Further-
more, time-series analyses of structural metrics M(GLLM,t)
against baseline metrics M(Gbase) are conducted continu-
ously, monitoring temporal metric deviations to detect grad-
ual model drift and performance deterioration of the LLM.
Figure 2 shows the Continuous Monitoring and Evalua-
tion Framework. This structured, mathematically rigorous
framework facilitates transparent, interpretable, and contin-
uous real-time evaluation of generative AI, significantly en-
hancing reliability and robustness in sensitive operational
contexts.

Result Analysis
Our comparative analysis of nine Large Language Models
(LLMs) across three temporal snapshots leverages ground
truth (GT) knowledge graph statistics as a reference point
to evaluate the structural fidelity and semantic robustness of
generated outputs. Table 2 now includes GT values for each
metric—Instantiated Class Ratio (ICR), Instantiated Prop-
erty Ratio (IPR), and Class Instantiation (CI)—allowing di-
rect alignment checks against the ideal target distribution.

Models such as gemini-1.5, vicuna, and qwen con-
sistently yielded higher ICR and CI scores, often approach-
ing or exceeding 60% of the GT values, suggesting a rela-
tively faithful use of schema classes and instantiation depth.
Notably, qwen reached an IPR of 0.40 compared to the GT
benchmark of 0.96, indicating a comparatively richer utiliza-
tion of relational predicates. In contrast, gpt-3.5-turbo
and llama3.3 trailed behind in all structural metrics, with
ICRs and IPRs significantly below GT levels, exposing clear
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Figure 2: Continuous Monitoring and Evaluation Framework for robustness (website screenshot for reference only)

Metrics GT src1 Timestamp1
GPT3.5 Mistral Gemini Deepseek Llama3 Gemma3 Vicuna Falcon3 Qwen

ICR 0.80 0.16 0.28 0.29 0.26 0.19 0.29 0.36 0.37 0.34
IPR 0.92 0.07 0.20 0.08 0.08 0.20 0.05 0.28 0.37 0.37
CI 0.09 0.07 0.16 0.11 0.22 0.03 0.18 0.17 0.15 0.14
HC 0.70 0.78 0.80 0.61 0.61 0.90 0.63 0.71 0.50

src2 Timestamp2
ICR 0.58 0.04 0.33 0.38 0.29 0.35 0.39 0.36 0.39 0.22
IPR 0.97 0.33 0.18 0.08 0.04 0.14 0.15 0.66 0.25 0.28
CI 0.12 0.03 0.20 0.22 0.15 0.18 0.15 0.14 0.15 0.01
HC 0.68 0.41 0.95 0.57 0.95 0.57 0.73 0.81 0.28

src3 Timestamp3
ICR 0.60 0.27 0.36 0.50 0.33 0.40 0.41 0.41 0.33 0.37
IPR 0.96 0.13 0.14 0.14 0.09 0.14 0.25 0.28 0.16 0.40
CI 0.16 0.10 0.11 0.16 0.16 0.15 0.14 0.14 0.12 0.16
HC 0.83 0.29 0.67 0.67 0.91 0.95 0.82 0.73 0.50

Table 2: Structural Quality Metric Evaluation for Knowledge Graphs, HC: Halucination

underutilization of the schema and reduced semantic granu-
larity.

Hallucination scores further differentiated model re-
liability. Although most LLMs maintained hallucination
rates between 2–8%, select configurations of qwen and
gpt-3.5-turbo exhibited rates approaching zero. These
results hint at strong alignment with input constraints in cer-
tain contexts. However, models like mistral and gemma3
sporadically introduced spurious or schema-inconsistent
triples, reflected in elevated hallucination scores across time-
frames. Despite lacking rigorous semantic validation, these
lightweight hallucination estimates—derived from NER-
based schema mismatches and lexical constraints—serve as
useful proxies for identifying fidelity lapses in real-world
deployments.

Temporal analysis reveals both improvements and regres-
sions over time. For example, mistral’s ICR increased

from 0.28 to 0.36 while its hallucination rate dropped to
0.00, indicating potential fine-tuning or prompt adapta-
tion effects. Meanwhile, vicuna and gemini-1.5 main-
tained stable structural alignment across all timestamps, re-
inforcing their reliability in sustained generation tasks.

Importantly, the hallucination values reported in Table 2
were computed using a simplified heuristic pipeline and
do not reflect the full semantic validation described in our
methodology. Our complete hallucination framework incor-
porates SPARQL-based triple validation and schema-level
ontology checks, which were not fully deployed due to com-
pute constraints. As such, these scores should be viewed as
approximations rather than definitive indicators of semantic
alignment.

Overall, the inclusion of GT baselines amplifies the in-
terpretability and rigor of our evaluation. Structural metrics
like ICR, IPR, and CI, when grounded in deterministic KG
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references, offer a scalable and interpretable framework for
monitoring LLM behavior. This approach is well-suited for
real-time diagnostics, enabling detection of schema under-
utilization, semantic drift, and hallucination, particularly in
safety-critical or compliance-sensitive settings.

Threats to Validity
Fallible deterministic baseline. Our rule-based baseline
KG is not infallible: dictionaries can be incomplete, pat-
terns can overfit or underfit, and ontology coverage may lag
emerging entities and relations. Errors in the baseline intro-
duce bias into the deviation signal (i.e., both Gbase and GLLM
can be wrong). We therefore treat the two graphs as noisy
sensors rather than “ground truth” and emphasize relative
change over absolute correctness.

Construct validity of metrics. ICR, IPR, and CI are
structural proxies for quality; they do not fully capture se-
mantic correctness. A model could inflate structural scores
while introducing subtle factual errors. Likewise, our Hallu-
cination Score—based on schema conformance and source
tracing—is heuristic and may miss open-world truths (false
positives under closed-world assumptions) or accept plausi-
ble but incorrect claims (false negatives).

Temporal and streaming data effects. We assume con-
tinuous ingestion of recent news to mitigate contamination
and static overfitting; however, streaming sources are bi-
ased and non-stationary. Coverage gaps, reporting delays,
and domain shifts can appear as anomalies unrelated to
model behavior. Volume fluctuations across time windows
can also perturb metrics. To reduce these risks, we analyze
time-series deviations ∆Mt = M(GLLM,t)−M(Gbase) and
focus on persistent patterns rather than single-step accuracy.

Anomaly detection sensitivity. Our anomaly score
A(Gt) and threshold αt = µA(t) + λσA(t) are sensi-
tive to the choice of weights wM , window sizes, and the
non-Gaussian nature of metric distributions. Poor calibration
can yield false alarms or missed drifts. We partially mitigate
this via historical normalization and sensitivity analyses, but
residual risk remains.

Assumption about feedback learning. We posit that de-
ployed LLMs may self-update (or be refreshed) over time.
Not all systems update continuously; some changes are
prompt-, cache-, or retrieval-induced rather than parame-
ter updates. Such heterogeneity complicates attribution of
detected shifts to “learning” versus deployment or data
pipeline changes.

Prompting and system configuration. Differences in
prompts, tool connectors, temperature, rate limits, and API
versions can confound comparisons across models and over
time. We log configurations and keep them fixed during in-
tervals, yet unannounced provider changes may still affect
outputs.

External validity and generalization. Our evaluation is
tied to specific ontologies and news-centric inputs. Results
may not transfer to other domains (e.g., code, math, multi-
modal tasks) or to ontologies with different depth/branching
properties.

Rationale for anomaly-first evaluation. Because both
the deterministic pipeline and the LLM extractor can err at

any instant, pointwise correctness is an unstable target. Con-
sequently, our primary decision variable is anomalous de-
viation over time—detecting sustained, significant shifts in
(ICR, IPR,CI) and the Hallucination Score relative to histor-
ical baselines—rather than maximizing snapshot accuracy.
This change-detection stance reduces overreliance on any
single noisy estimate of “truth.”

Mitigations and future work. We plan (i) periodic
human audits of sampled triples from both graphs, (ii)
cross-source redundancy and backfilling to stabilize streams,
(iii) ontology expansion and dictionary refreshes to reduce
baseline brittleness, (iv) multi-metric ensembles and robust
thresholds (e.g., quantile or EVT-based) to curb sensitivity,
and (v) release of prompts/configs and seeds for replicabil-
ity. Incorporating a third, independent KG (when available)
could further triangulate deviations.

Benefits and Use Cases
Our evaluation framework matters because it treats model
performance as a time series rather than a one–off score.
By contrasting an LLM-generated KG with a determinis-
tic baseline KG on a continuous stream of inputs, it avoids
the pitfalls of static, contamination-prone benchmarks and
yields a vendor-agnostic, interpretable view of model be-
havior. The approach does not require access to model
weights or proprietary internals and can operate without la-
beled data, relying instead on schema-aware structural sig-
nals (ICR, IPR, CI) and a drift-oriented anomaly score.
These signals are explainable to engineers and auditors, re-
producible through fixed ontologies and logged configura-
tions, and privacy-aware because the evaluation can run en-
tirely within organizational boundaries with only aggregate
statistics shared externally. Most importantly, the emphasis
is on persistent deviations over time rather than snapshot ac-
curacy, providing early warning for regressions and unstable
updates.

The framework is immediately useful for individuals and
research groups who wish to track a personal or team LLM
over time and compare it against state-of-the-art alternatives
under the same live input stream. A simple dashboard can
reveal whether updates, prompt changes, or data pipeline
tweaks expand or shrink class coverage (ICR), alter rela-
tion richness (IPR), or skew depth usage (CI), while the
anomaly score highlights periods of elevated hallucination
risk or schema misuse.

Enterprises can apply the same methodology during pro-
curement to run side-by-side evaluations of candidate mod-
els on domain-specific streams, making it possible to choose
which LLM to buy based on stability and drift profiles rather
than marketing claims. After deployment, the organization
can maintain a measurable track record by setting drift bud-
gets and service-level thresholds for the anomaly score; sus-
tained exceedances trigger automated rollbacks, canary iso-
lation, or vendor notifications, turning reliability into en-
forceable operations.

Product teams benefit during experimentation and rollout.
The framework supports A/B comparisons across prompts,
tool chains, retrieval configurations, and temperatures, sur-
facing configuration-induced shifts in structural metrics be-
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fore full release. In fine-tuning or retraining cycles, it checks
whether desired gains in class coverage are achieved with-
out collapsing onto a few classes or inflating spurious pred-
icates, thereby catching overfitting and schema imbalance
early. For retrieval-augmented systems, it helps distinguish
retrieval or ontology issues (baseline KG) from generation
issues (LLM KG): for example, drops in IPR with stable ICR
can indicate sparse retrieval rather than model degradation.

Regulated and safety-critical settings gain auditable,
time-stamped evidence of continuous oversight. Because the
method centers on interpretable structural metrics and doc-
umented thresholds, auditors can review changes without
exposure to sensitive prompts or user data. The same de-
sign scales to multi-tenant platforms and aggregators, which
can route traffic to the most stable model per domain by
monitoring model-specific drift patterns over time. Finally,
the research community can build streaming, schema-aware
leaderboards that emphasize robustness and temporal stabil-
ity, encouraging progress that is harder to game than static
accuracy tables and applicable even in edge or offline de-
ployments where human evaluation is infeasible.

Conclusion
We presented a principled, real-time evaluation framework
for large generative models that reframes assessment as
streaming, schema-aware comparison between two com-
plementary knowledge graphs: a deterministic, rule-built
baseline and an LLM-generated graph. By operationalizing
structural metrics—Instantiated Class Ratio (ICR), Instan-
tiated Property Ratio (IPR), and depth-weighted Class In-
stantiation (CI)—alongside a schema- and source-grounded
hallucination score, the framework yields interpretable
signals of completeness, expressivity, and semantic fi-
delity without requiring labeled data or model internals.
A time-series anomaly detector with dynamic thresholds
translates these signals into actionable alerts, enabling early
detection of drift and reliability regressions that static,
contamination-prone benchmarks often miss. Empirical re-
sults across nine models and three temporal snapshots
demonstrate that the approach differentiates model behav-
ior, surfaces stability profiles, and reveals configuration- or
update-induced changes over time. Practically, the method
is vendor-agnostic, auditable, and privacy-aware, supporting
use cases from personal model tracking and fine-tuning QA
to enterprise procurement, SLA monitoring, and compliance
reporting. A key design stance is to treat both graphs as noisy
sensors: rather than optimizing pointwise correctness at any
single time step, we prioritize persistent deviations in struc-
tural metrics and hallucination rates. This anomaly-first per-
spective provides robust monitoring even when individual
extractors (deterministic or LLM-based) are imperfect. Fu-
ture work will expand coverage to domain-specific and mul-
timodal ontologies, strengthen robustness via quantile/EVT-
based thresholds and sensitivity analyses, and improve at-
tribution by disentangling retrieval, prompting, and param-
eter updates. Incorporating a third independent KG for tri-
angulation, periodic human audits, and open benchmarks
for streaming, schema-aware evaluation are additional direc-
tions. As LLMs evolve and refresh continuously, we argue

that such structured, time-series evaluation will be essential
for trustworthy, accountable deployment at scale.
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